On discretization errors and subgrid scale model implementations in large eddy simulations

نویسندگان

  • Axelle Viré
  • Bernard Knaepen
چکیده

Submitted for the DFD08 Meeting of The American Physical Society On discretization errors and subgrid scale model implementations in Large Eddy Simulations BERNARD KNAEPEN, AXELLE VIRÉ, Université Libre de Bruxelles — We analyze the impact of discretization errors on the performance of the Smagorinsky model in Large Eddy Simulations (LES). To avoid difficulties related to solid boundaries, we focus on decaying homogeneous turbulence. It is shown that two numerical implementations of the model in the same finite volume code lead to significantly different results in terms of kinetic energy decay, time evolutions of the viscous dissipation and kinetic energy spectra. In comparison with spectral LES results, excellent predictions are however obtained with a novel formulation of the model derived from the discrete Navier-Stokes equations. We also highlight the effect of discretization errors on the measurement of physical quantities that involve scales close to the grid resolution. Bernard Knaepen Université Libre de Bruxelles Date submitted: 05 Aug 2008 Electronic form version 1.4

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Analysis of numerical errors in large eddy simulation using statistical closure theory

This paper develops a dynamic error analysis procedure for the numerical errors arising from spatial discretization in large-eddy simulation. The analysis is based on EDQNM closure theory, and is applied to the LES of decaying isotropic turbulence. First, the effects of finite-differencing truncation error, aliasing error and the dynamic Smagorinsky model are independently considered. The time-...

متن کامل

Optimal model parameters for multi-objective large-eddy simulations

A methodology is proposed for the assessment of error dynamics in large-eddy simulations. It is demonstrated that the optimization of model parameters with respect to one flow property can be obtained at the expense of the accuracy with which other flow properties are predicted. Therefore, an approach is introduced which allows to assess the total errors based on various flow properties simulta...

متن کامل

On the Impact of Tangential Grid Refinement on Subgrid-Scale Modelling in Large Eddy Simulation

The paper presents Large Eddy Simulations of plane channel flow at a friction Reynolds number of 180 and 395 with a block-structured Finite Volume method. Local grid refinement near the solid wall is employed in order to reduce the computational cost of such simulations or other simulations of wall-bounded flows. Different subgrid-scale models are employed and different expressions for the leng...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009